DocumentCode :
1302226
Title :
Finding optimal neural networks for land use classification
Author :
Bischof, H. ; Leonardis, Ale
Author_Institution :
Wien Univ.
Volume :
36
Issue :
1
fYear :
1998
fDate :
1/1/1998 12:00:00 AM
Firstpage :
337
Lastpage :
341
Abstract :
The authors present a fully automatic and computationally efficient algorithm based on the minimum description length principle (MDL) for optimizing multilayer perceptron (MLP) classifiers. They demonstrate their method on the problem of multispectral Landsat image classification. They compare their results with a hand-designed MLP and a Gaussian maximum likelihood classifier, in which their method produces better classification accuracy with a smaller number of hidden units
Keywords :
geophysical signal processing; geophysical techniques; geophysics computing; image classification; multilayer perceptrons; optimisation; remote sensing; accuracy; classifier; computationally efficient algorithm; geophysical measurement technique; image classification; land surface; land use; minimum description length; multidimensional image processing; multilayer perceptron; multispectral Landsat image; multispectral remote sensing; neural net; optimal neural network; optimization; terrain mapping; Crops; Frequency; Land surface; Microwave radiometry; Neural networks; Passive microwave remote sensing; Polarization; Remote sensing; Soil; Vegetation mapping;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/36.655348
Filename :
655348
Link To Document :
بازگشت