DocumentCode :
1302414
Title :
One universally efficient estimation of the first-order autoregressive parameter and universal data compression
Author :
Merhav, Neri ; Ziv, Jacob
Author_Institution :
AT&T Bell Lab., Murray Hill, NJ, USA
Volume :
36
Issue :
6
fYear :
1990
fDate :
11/1/1990 12:00:00 AM
Firstpage :
1245
Lastpage :
1254
Abstract :
A universal nearly efficient estimator is proposed for the first-order autoregressive (AR) model where the probability distribution of the driving noise is unknown. It is shown that universal estimators for the AR model can be derived from universal data compression algorithms and universal tests for randomness. In other words, estimators derived appropriately from efficient universal codes can be expected to inherit good estimation performance under some conditions. The proposed estimator has a simple information-theoretic interpretation related to universal coding, which can be easily generalized to the higher-order case and to other parametric models, e.g. the one-sample location model, the two-sample location model, and the linear regression model
Keywords :
data compression; encoding; information theory; parameter estimation; driving noise; first-order autoregressive parameter; information-theoretic interpretation; linear regression model; one-sample location model; parameter estimation; probability distribution; two-sample location model; universal coding; universal data compression; universally efficient estimation; Autoregressive processes; Cities and towns; Data compression; Entropy; Equations; Probability distribution; Random variables; Robustness; Stochastic processes; Testing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.59925
Filename :
59925
Link To Document :
بازگشت