Title :
Conjugate gradient projection subspace tracking
Author :
Fu, Zuqiang ; Dowling, Eric M.
Author_Institution :
Erik Jonsson Sch. of Eng. & Comput. Sci., Texas Univ., Dallas, TX, USA
fDate :
6/1/1997 12:00:00 AM
Abstract :
In this correspondence, we develop a new subspace tracking algorithm called the conjugate gradient projection subspace tracker (CGPST). The algorithm is based on a recently introduced RLS-like subspace cost function, which we recursively minimize using conjugate gradient iterations. Subspace averaging concepts are used to produce an O(r2m) algorithm that updates an r-dimensional subspace of Cm. The algorithm is parallelizable, rapidly convergent, numerically stable, and computationally efficient. Simulation studies test the algorithm´s performance and show it to compare favorably with other subspace trackers
Keywords :
computational complexity; conjugate gradient methods; convergence of numerical methods; eigenvalues and eigenfunctions; numerical stability; parallel algorithms; signal processing; tracking; O(r2m) algorithm; RLS-like subspace cost function; computationally efficient algorithm; conjugate gradient iterations; conjugate gradient projection subspace tracker; eigenvalue estimation; numerically stable algorithm; parallel algorithm; r-dimensional subspace; rapidly convergent algorithm; subspace averaging concepts; subspace tracking algorithm; Computational modeling; Concurrent computing; Cost function; Direction of arrival estimation; Eigenvalues and eigenfunctions; Frequency estimation; Multiple signal classification; Signal processing algorithms; Stochastic processes; Testing;
Journal_Title :
Signal Processing, IEEE Transactions on