DocumentCode
1308612
Title
Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines
Author
Bevrani, Hassan ; Daneshmand, Pourya Ranjbar
Author_Institution
Dept. of Electr. Eng., Univ. of Kurdistan, Sanandaj, Iran
Volume
6
Issue
1
fYear
2012
fDate
3/1/2012 12:00:00 AM
Firstpage
173
Lastpage
180
Abstract
Load-frequency control (LFC) in interconnected power systems is undergoing fundamental changes due to rapidly growing amount of wind turbines, and emerging of new types of power generation/consumption technologies. The infrastructure of modern LFC systems should be able to handle complex multiobjective regulation optimization problems characterized by a high degree of diversification in policies, and widely distribution in demand and supply sources to ensure that the LFC systems are capable to maintain generation-load balance, following serious disturbances. Wind power fluctuations impose additional power imbalance to the power system and cause frequency deviation from the nominal value. This paper addresses a new decentralized fuzzy logic-based LFC schemes for simultaneous minimization of system frequency deviation and tie-line power changes, which is required for successful operation of interconnected power systems in the presence of high-penetration wind power. In order to obtain an optimal performance, the particle swarm optimization technique is used to determine membership functions parameters. The physical and engineering aspects have been fully considered, and to demonstrate effectiveness of the proposed control scheme, a time domain simulation is performed on the standard 39-bus test system. The results are compared with conventional LFC design for serious load disturbance and various rates of wind power penetrations.
Keywords
frequency control; fuzzy control; load regulation; particle swarm optimisation; power system control; power system interconnection; wind power; wind turbines; LFC design; LFC system; complex multiobjective regulation optimization problem; decentralized fuzzy logic; generation-load balance; high penetration; interconnected power system; load disturbance; load-frequency control; membership functions parameter; particle swarm optimization; power consumption; power generation; power imbalance; system frequency deviation; tie-line power change; time domain simulation; wind power fluctuation; wind power penetration; wind turbine; Frequency control; Fuzzy logic; Manganese; Power systems; Tin; Wind power generation; Wind turbines; Fuzzy control; load-frequency control; particle swarm optimization; wind power generation;
fLanguage
English
Journal_Title
Systems Journal, IEEE
Publisher
ieee
ISSN
1932-8184
Type
jour
DOI
10.1109/JSYST.2011.2163028
Filename
6003738
Link To Document