DocumentCode :
1310156
Title :
Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks
Author :
Chen, J.D.Z. ; Lin, Zhiyue ; McCallum, Richard W
Author_Institution :
GI Div., Texas Univ., Galveston, TX, USA
Volume :
47
Issue :
3
fYear :
2000
fDate :
3/1/2000 12:00:00 AM
Firstpage :
409
Lastpage :
412
Abstract :
Radioscintigraphy is currently the gold standard for gastric emptying test which involves radiation exposure and is considerably expensive. The authors present a feature-based detection approach using neural networks for the noninvasive diagnosis of delayed gastric emptying from the cutaneous electrogastrogram (EGG). Simultaneous recordings of the EGG and scintigraphic gastric emptying test were made in 152 patients with symptoms suggestive of delayed gastric emptying. Spectral analyses were performed to derive EGG parameters which were used as the input of the neural network. The result of scintigraphic gastric emptying was used as the gold standard for the training and testing of the neural network. A correct classification of 85% (a specificity of 89% and a sensitivity of 82%) was achieved using the proposed method.
Keywords :
bioelectric potentials; biological organs; medical signal detection; neural nets; spectral analysis; EGG; correct classification; cutaneous electrogastrogram; delayed gastric emptying; gold standard; humans; medical diagnostic technique; noninvasive diagnosis; noninvasive feature-based detection; radioscintigraphy; scintigraphic gastric emptying test; simultaneous recordings; Computer vision; Delay; Frequency; Gold; Humans; Intelligent networks; Neural networks; Spectral analysis; Stomach; Testing; Adolescent; Adult; Aged; Artifacts; Electromyography; Female; Gastric Emptying; Humans; Male; Middle Aged; Neural Networks (Computer); Signal Processing, Computer-Assisted; Stomach Diseases;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/10.827310
Filename :
827310
Link To Document :
بازگشت