DocumentCode :
1310849
Title :
Adaptive control scheme using real time tuning of the parameter estimator
Author :
Maitelli, A.L. ; Yoneyama, T.
Author_Institution :
Dept. of Electr. Eng., Fed. Univ. of Rio Grande do Norte, Brazil
Volume :
144
Issue :
3
fYear :
1997
fDate :
5/1/1997 12:00:00 AM
Firstpage :
241
Lastpage :
248
Abstract :
The paper presents an adaptive controller for discrete-time systems, with parameters modelled as a Gauss-Markov process with an unknown noise covariance matrix. The cost function adopted in the optimisation of the control performance is the sum of the output variances up to M steps ahead in time. Optimal predictors are used to estimate the future outputs y(k+i), i=1, 2. ..., M, that are needed in the solution of the optimisation problem that yields the value of the control signal at a given time k. The estimates for the system parameters are obtained using a Kalman filter, together with an algorithm to tune the covariance matrix in real time. The adaptation mechanism reduces the risk of divergence of the Kalman filter, as shown by simulation results that illustrate the actual performance of the new controller under uncertainty in the noise covariance matrix
Keywords :
Gaussian processes; Kalman filters; Markov processes; adaptive control; covariance matrices; filtering theory; noise; parameter estimation; real-time systems; uncertain systems; Gauss-Markov process; Kalman filter; adaptive control scheme; control performance optimisation; cost function; covariance matrix tuning; discrete-time systems; divergence risk; optimal control; optimal predictors; real-time tuning; system parameter estimation; unknown noise covariance matrix;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:19971174
Filename :
600620
Link To Document :
بازگشت