Title :
Global Optimization by Adapted Diffusion
Author :
Poliannikov, Oleg V. ; Zhizhina, Elena ; Krim, Hamid
Author_Institution :
Earth Resources Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
In this paper, we study a diffusion stochastic dynamics with a general diffusion coefficient. The main result is that adapting the diffusion coefficient to the Hamiltonian allows to escape local wide minima and to speed up the convergence of the dynamics to the global minima. We prove the convergence of the invariant measure of the modified dynamics to a measure concentrated on the set of global minima and show how to choose a diffusion coefficient for a certain class of Hamiltonians.
Keywords :
Markov processes; convergence; simulated annealing; stochastic programming; Hamiltonian coefficient; convergence; diffusion coefficient adaptation; diffusion stochastic dynamics; general diffusion coefficient; global minima; global optimization; local wide minima; nonhomogeneous Markov chains; simulated annealing; Convergence; Cooling; Diffusion processes; Histograms; Markov processes; Nonlinear systems; Optimization; Nonlinear systems; optimization methods; simulated annealing; stochastic fields;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2010.2071867