DocumentCode :
1311865
Title :
Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras
Author :
Unger, Thomas ; Markin, Nadya
Author_Institution :
Sch. of Math. Sci., Univ. Coll. Dublin, Dublin, Ireland
Volume :
57
Issue :
9
fYear :
2011
Firstpage :
6148
Lastpage :
6156
Abstract :
In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer´s theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.
Keywords :
space-time block codes; tensors; Springer theorem; biquaternion algebras; division algebras; generalized quaternion algebras; quadratic form theoretic criteria; space-time block codes; tensor products; Block codes; Cost accounting; Matrices; Quaternions; Tensile stress; Division algebras; quadratic forms; space-time block codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2161909
Filename :
6006635
Link To Document :
بازگشت