Title :
Dynamic Characteristics of Power Gating During Mode Transition
Author :
Xu, Hao ; Vemuri, Ranga ; Jone, Wen-Ben
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Cincinnati, Cincinnati, OH, USA
Abstract :
With the technology moving into the deep sub-100-nm region, the increase of leakage power consumption necessitates more aggressive power reduction techniques. Power gating is a promising technique. Our research emphasizes that with the latest and future technologies, power gating operates frequently in its transition mode, especially for aggressive leakage reduction. The dynamic characteristics of power gating during its mode transition is critical for making design decision. Hence we derive a fast, accurate, and temperature-aware model to characterize the dynamic behavior of power gating during mode transition. The applications of this model include the estimation of several key design parameters for power gating, such as dynamic virtual ground voltage, dynamic leakage variation and energy break-even time. It provides an efficient estimation engine for power gating design optimization. The accuracy of the model has been verified by extensive HSPICE experiments. The model is computationally efficient due to the usage of various approximation methods.
Keywords :
CMOS logic circuits; MOSFET; HSPICE experiments; aggressive leakage reduction; approximation methods; dynamic leakage variation; dynamic virtual ground voltage; energy break-even time; estimation engine; leakage power consumption; mode transition; power gating design optimization; power gating dynamic characteristics; power reduction techniques; temperature-aware model; Energy break-even time; leakage power consumption; mode transition; power gating; virtual ground voltage;
Journal_Title :
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
DOI :
10.1109/TVLSI.2009.2033699