DocumentCode :
1315985
Title :
Neural net based nonstandard A/D conversion
Author :
Anastassiou, D.
Author_Institution :
Dept. of Electr. Eng., Columbia Univ., New York, NY
Volume :
24
Issue :
10
fYear :
1988
fDate :
5/12/1988 12:00:00 AM
Firstpage :
619
Lastpage :
620
Abstract :
A technique for nonstandard A/D conversion of signals subject to a fidelity criterion is described, based on Hopfield neural networks. Switched-capacitor neural networks offer a natural means for efficient implementation of the proposed technique. Applications include all forms of PCM coding, oversampled A/D conversion and digital image halftoning
Keywords :
analogue-digital conversion; encoding; neural nets; pulse-code modulation; switched capacitor networks; Hopfield neural networks; PCM coding; digital image halftoning; fidelity criterion; nonstandard A/D conversion; oversampled A/D conversion; signal quantisation; switched capacitor neural networks;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
Filename :
8296
Link To Document :
بازگشت