Author :
Amini, Arash ; Karbasi, Amin ; Marvasti, Farokh
Author_Institution :
EE Dept., Sharif Univ. of Technol., Tehran, Iran
Abstract :
The problem of extracting low-dimensional structure from high-dimensional data arises in many applications such as machine learning, statistical pattern recognition, wireless sensor networks, and data compression. If the data is restricted to a lower dimensional subspace, then simple algorithms using linear projections can find the subspace and consequently estimate its dimensionality. However, if the data lies on a low-dimensional but nonlinear space (e.g., manifolds), then its structure may be highly nonlinear and, hence, linear methods are doomed to fail. In this paper, we introduce a new technique for dimensionality reduction based on point-wise operators. More precisely, let be a matrix of rank and assume that the matrix is generated by taking the elements of to some real power . In this paper, we show that based on the values of the data matrix , one can estimate the value and, therefore, the underlying low-rank matrix ; i.e., we are reducing the dimensionality of by using point-wise operators. Moreover, the estimation algorithm does not need to know the rank of . We also provide bounds on the quality of the approximation and validate the stability of the proposed algorithm with simulations in noisy environments.
Keywords :
approximation theory; matrix algebra; data compression; dimensionality reduction; linear projection; low-rank matrix approximation; machine learning; point-wise operator; statistical pattern recognition; wireless sensor network; Approximation methods; Matrix decomposition; Polynomials; Taylor series; Tin; Tomography; Ultrasonic imaging; Dimensionality reduction; low-rank matrix; point-wise operator;