DocumentCode :
1319861
Title :
Hamilton-Jacobi-Bellman Equation and Feedback Synthesis for Impulsive Control
Author :
Fraga, S.L. ; Pereira, Fernando L.
Author_Institution :
Fac. de Eng., Univ. do Porto, Porto, Portugal
Volume :
57
Issue :
1
fYear :
2012
Firstpage :
244
Lastpage :
249
Abstract :
There is an increasing number of applications whose trajectories are better modeled by discontinuous or impulsive trajectories. Thus, we explore optimality conditions for impulsive control system expressed in terms of an Hamilton-Jacobi-Bellman equation. We use a measure driven differential inclusion to model the impulsive behavior since it provides a formal framework in which the control space is complete. Additionally, we use the impulsive Euler solution and invariance results to derive feedback optimal control synthesis.
Keywords :
control system synthesis; feedback; optimal control; partial differential equations; Hamilton-Jacobi-Bellman equation; feedback optimal control synthesis; feedback synthesis; impulsive Euler solution; impulsive control system; measure driven differential inclusion; Equations; Mathematical model; Optimal control; Trajectory; Feedback synthesis; Hamilton-Jacobi-Bellman equation; impulsive control; measure driven differential inclusions; optimal control;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2011.2167822
Filename :
6018251
Link To Document :
بازگشت