Title :
Fast Variational Sparse Bayesian Learning With Automatic Relevance Determination for Superimposed Signals
Author :
Shutin, Dmitriy ; Buchgraber, Thomas ; Kulkarni, Sanjeev R. ; Poor, H. Vincent
Author_Institution :
Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA
Abstract :
In this work, a new fast variational sparse Bayesian learning (SBL) approach with automatic relevance determination (ARD) is proposed. The sparse Bayesian modeling, exemplified by the relevance vector machine (RVM), allows a sparse regression or classification function to be constructed as a linear combination of a few basis functions. It is demonstrated that, by computing the stationary points of the variational update expressions with noninformative (ARD) hyperpriors, a fast version of variational SBL can be constructed. Analysis of the computed stationary points indicates that SBL with Gaussian sparsity priors and noninformative hyperpriors corresponds to removing components with signal-to-noise ratio below a 0 dB threshold; this threshold can also be adjusted to significantly improve the convergence rate and sparsity of SBL. It is demonstrated that the pruning conditions derived for fast variational SBL coincide with those obtained for fast marginal likelihood maximization; moreover, the parameters that maximize the variational lower bound also maximize the marginal likelihood function. The effectiveness of fast variational SBL is demonstrated with synthetic as well as with real data.
Keywords :
Bayes methods; Gaussian processes; convergence; maximum likelihood estimation; regression analysis; signal classification; sparse matrices; support vector machines; Gaussian sparsity prior; automatic relevance determination; convergence rate; fast variational sparse Bayesian learning; marginal likelihood maximization; noninformative hyperprior; relevance vector machine; signal-to-noise ratio; sparse classification function; sparse regression function; superimposed signal; variational SBL; Approximation methods; Bayesian methods; Convergence; Covariance matrix; Signal to noise ratio; Automatic relavance determination; sparse Bayesian learning; variational Bayesian inference;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2011.2168217