Title :
Designing piezoelectric films for micro electromechanical systems
Author :
Trolier-McKinstry, Susan ; Griggio, F. ; Yaeger, C. ; Jousse, P. ; Dalong Zhao ; Bharadwaja, S.S.N. ; Jackson, Thomas N. ; Jesse, S. ; Kalinin, S.V. ; Wasa, Kiyotaka
Author_Institution :
Mater. Sci. & Eng. Dept., Pennsylvania State Univ., University Park, PA, USA
fDate :
9/1/2011 12:00:00 AM
Abstract :
Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr0.52Ti0.48O3 thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.
Keywords :
grain size; lead compounds; micromechanical devices; permittivity; piezoelectric devices; piezoelectric thin films; piezoelectricity; PFM; PbZr0.52Ti0.48O3; Rayleigh behavior; actuation; band excitation piezoresponse force microscopy; chemical solution-derived PZT thin films; cluster scale; collective motion; composite connectivity patterns; domain walls; energy harvesting systems; energy-harvesting figure of merit; flexible ultrasound arrays; grain size; lead-based perovskite films; low-voltage microelectromechanical systems; microstructure; model systems; nonlinear matrix; nonlinear response clusters; permittivity; piezoelectric coefficients; piezoelectric properties; piezoelectric thin films; sensing; size 75 nm to 300 nm; ultrasound pill cameras; unattended wireless sensors; Energy harvesting; Films; Grain size; Imaging; Permittivity; Ultrasonic imaging;
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
DOI :
10.1109/TUFFC.2011.2015