DocumentCode :
1323053
Title :
Automatic and accurate evaluation of the parameters of a magnetic hysteresis model
Author :
Grimaldi, Domenico ; Michaeli, Linus ; Palumbo, Arrigo
Author_Institution :
Dipt. di Elettronica, Inf., e Sistemistica, Calabria Univ., Italy
Volume :
49
Issue :
1
fYear :
2000
fDate :
2/1/2000 12:00:00 AM
Firstpage :
154
Lastpage :
160
Abstract :
This paper presents a method based on both artificial neural networks (ANNs) and on a multidimensional optimization procedure in order to significantly reduce the time taken and to improve the accuracy in evaluating parameters of the Jiles-Atherton model of magnetic hysteresis. The main steps of the method are (1) data acquisition of the experimental hysteresis loop of the magnetic material under test, (2) evaluation of the model´s parameters by means of ANN, and (3) parameter accuracy improvement by means of a multidimensional optimization procedure. In order to highlight the method´s effectiveness, the results of numerical and experimental tests are also given
Keywords :
backpropagation; electrical engineering computing; feedforward neural nets; magnetic cores; magnetic domain walls; magnetic hysteresis; modelling; optimisation; parameter estimation; Jiles-Atherton model; PSPICE; artificial neural networks; automatic accurate evaluation; backpropagation; data acquisition; domain wall motion; domain wall pinning; feedforward network; hysteresis loop; learning phase; magnetic core; magnetic hysteresis model; magnetic induction; magnetic material under test; model parameters evaluation; multidimensional optimization; parameter accuracy improvement; Artificial neural networks; Magnetic devices; Magnetic domain walls; Magnetic hysteresis; Magnetic materials; Multidimensional systems; Optimization methods; Saturation magnetization; Shape measurement; Velocity measurement;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/19.836327
Filename :
836327
Link To Document :
بازگشت