DocumentCode :
1323816
Title :
The exponential stability of the invariant-norm PCA algorithm
Author :
Reif, Konrad ; Luo, Fa-Long ; Unbehauen, Rolf
Author_Institution :
Lehrstuhl fur Allgemeine und Theor. Elektrotech., Erlangen-Nurnberg Univ., Germany
Volume :
44
Issue :
10
fYear :
1997
fDate :
10/1/1997 12:00:00 AM
Firstpage :
873
Lastpage :
876
Abstract :
This brief investigates a recently proposed principal component analysis (PCA) algorithm. We prove that that the solutions of the corresponding differential equations converge to the principal eigenvectors of the autocorrelation matrix and calculate an exponential decaying bound for the error
Keywords :
adaptive signal processing; asymptotic stability; correlation methods; differential equations; eigenvalues and eigenfunctions; matrix algebra; neural nets; adaptive signal processing; autocorrelation matrix; differential equations; error; exponential decaying bound; exponential stability; invariant-norm PCA algorithm; linear single-layer network; neural networks; principal component analysis; principal eigenvectors; stochastic approximation; Autocorrelation; Circuits; Differential equations; Digital filters; Digital signal processing; Principal component analysis; Signal processing; Signal processing algorithms; Stability; System identification;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7130
Type :
jour
DOI :
10.1109/82.633449
Filename :
633449
Link To Document :
بازگشت