DocumentCode
1326423
Title
Convergence rates of perturbation-analysis-Robbins-Monro-single-run algorithms for single server queues
Author
Tang, Qian-Yu ; Chen, Han-Fu ; Han, Zeng-jin
Author_Institution
Dept. of Autom., Tsinghua Univ., Beijing, China
Volume
42
Issue
10
fYear
1997
fDate
10/1/1997 12:00:00 AM
Firstpage
1442
Lastpage
1447
Abstract
In this paper the perturbation-analysis-Robbins-Monro-single-run algorithm is applied to estimating the optimal parameter of a performance measure for the GI/G/1 queueing systems, where the algorithm is updated after every fixed-length observation period. Our aim is to analyze the limiting behavior of the algorithm. The almost sure convergence rate of the algorithm is established. It is shown that the convergence rate depends on the second derivative of the performance measure at the optimal point
Keywords
convergence; optimisation; perturbation techniques; queueing theory; GI/G/1 queueing systems; almost sure convergence rate; fixed-length observation period; optimal parameter estimation; performance measure; perturbation-analysis-Robbins-Monro-single-run algorithms; single server queues; Algorithm design and analysis; Approximation algorithms; Automatic control; Control systems; Convergence of numerical methods; Discrete event systems; Laboratories; Parameter estimation; Stochastic processes; Stochastic systems;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/9.633835
Filename
633835
Link To Document