• DocumentCode
    1326423
  • Title

    Convergence rates of perturbation-analysis-Robbins-Monro-single-run algorithms for single server queues

  • Author

    Tang, Qian-Yu ; Chen, Han-Fu ; Han, Zeng-jin

  • Author_Institution
    Dept. of Autom., Tsinghua Univ., Beijing, China
  • Volume
    42
  • Issue
    10
  • fYear
    1997
  • fDate
    10/1/1997 12:00:00 AM
  • Firstpage
    1442
  • Lastpage
    1447
  • Abstract
    In this paper the perturbation-analysis-Robbins-Monro-single-run algorithm is applied to estimating the optimal parameter of a performance measure for the GI/G/1 queueing systems, where the algorithm is updated after every fixed-length observation period. Our aim is to analyze the limiting behavior of the algorithm. The almost sure convergence rate of the algorithm is established. It is shown that the convergence rate depends on the second derivative of the performance measure at the optimal point
  • Keywords
    convergence; optimisation; perturbation techniques; queueing theory; GI/G/1 queueing systems; almost sure convergence rate; fixed-length observation period; optimal parameter estimation; performance measure; perturbation-analysis-Robbins-Monro-single-run algorithms; single server queues; Algorithm design and analysis; Approximation algorithms; Automatic control; Control systems; Convergence of numerical methods; Discrete event systems; Laboratories; Parameter estimation; Stochastic processes; Stochastic systems;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.633835
  • Filename
    633835