DocumentCode :
1326466
Title :
Weighted least squares set estimation from l-norm bounded noise data
Author :
Keesman, K.J.
Author_Institution :
Dept. of Agric. Eng. & Phys., Wageningen Agric. Univ., Netherlands
Volume :
42
Issue :
10
fYear :
1997
fDate :
10/1/1997 12:00:00 AM
Firstpage :
1456
Lastpage :
1459
Abstract :
The problem of parameter set estimation from pointwise bounded-error data is considered. The possibilities of employing l2 -projection procedures to solve the problem are explored, and exact as well as approximate outer-bounding solutions are proposed. In particular, the properties of weighted least squares set estimation in this l norm bounded-error context and the implementation of a resulting minimum-volume parallelotope-bounding algorithm are discussed
Keywords :
error analysis; least squares approximations; parameter estimation; set theory; approximate outer-bounding; l-norm bounded noise data; parallelotopes; parameter set estimation; pointwise bounded-error data; set membership identification; weighted least squares; Agricultural engineering; Algorithm design and analysis; Colored noise; Equations; Least squares approximation; Least squares methods; Measurement uncertainty; Noise measurement; Parameter estimation; Physics;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.633838
Filename :
633838
Link To Document :
بازگشت