Title :
A prediction model that combines rain attenuation and other propagation impairments along Earth-satellite paths
Author :
Dissanayake, Asoka ; Allnutt, Jeremy ; Haidara, Fatim
Author_Institution :
COMSAT Lab., Clarksburg, MD, USA
fDate :
10/1/1997 12:00:00 AM
Abstract :
The rapid growth of satellite services using higher frequency bands such as the Ka-band has highlighted a need for estimating the combined effect of different propagation impairments. Many projected Ka-band services will use very small terminals and, for some, rain effects may only form a relatively small part of the total propagation link margin. It is therefore necessary to identify and predict the overall impact of every significant attenuating effect along any given path. A procedure for predicting the combined effect of rain attenuation and several other propagation impairments (at frequencies between 4 and 35 GHz) along Earth-satellite paths is presented. Where an accurate model exist for some phenomena, these have been incorporated into the prediction procedure. New models were developed, however, for rain attenuation, cloud attenuation, and low-angle fading to provide more overall accuracy, particularly at very low elevation angles (<10°). In the absence of a detailed knowledge of the occurrence probabilities of different impairments, an empirical approach is taken in estimating their combined effects. An evaluation of the procedure is made using slant-path attenuation data that have been collected with simultaneous beacon and radiometer measurements which allow a near complete account of different impairments. Results indicate that the rain attenuation element of the model provides the best average accuracy globally between 10 and 30 GHz and that the combined procedure gives prediction accuracies comparable to uncertainties associated with the year-to-year variability of path attenuation
Keywords :
clouds; electromagnetic wave absorption; fading; microwave propagation; millimetre wave propagation; probability; satellite communication; satellite links; tropospheric electromagnetic wave propagation; 4 to 35 GHz; EHF; Earth-satellite paths; Ka-band services; SHF; average accuracy; beacon measurement; cloud attenuation; empirical approach; frequency band; low angle fading; low elevation angles; occurrence probabilities; prediction accuracies; prediction model; propagation impairments; propagation link margin; radiometer measurement; rain attenuation; satellite services; slant path attenuation data; uncertainties; Apertures; Attenuation; Clouds; Frequency estimation; Local area networks; Predictive models; Radiometry; Rain; Satellite broadcasting; Satellite ground stations;
Journal_Title :
Antennas and Propagation, IEEE Transactions on