DocumentCode
1328396
Title
Stability Analysis of VSC MTDC Grids Connected to Multimachine AC Systems
Author
Chaudhuri, Nilanjan Ray ; Majumder, Rajat ; Chaudhuri, Balarko ; Pan, Jiuping
Author_Institution
Imperial Coll. London, London, UK
Volume
26
Issue
4
fYear
2011
Firstpage
2774
Lastpage
2784
Abstract
Interaction between multimachine ac systems and a multiterminal dc (MTDC) grid and the impact on the overall stability of the combined ac-MTDC system is studied in this paper. A generic modeling framework for voltage-source converter (VSC)-based MTDC grids, which is compatible with standard multimachine ac system models, is developed to carry out modal analysis and transient simulation. A general asymmetric bipole converter configuration comprising positive and negative pole converters and dc cable network with a positive, negative, and metallic return circuit is considered to enable different types of faults and dc-side unbalance studies. Detailed dynamic representation of the dc cables with distributed pi-section models is used along with the averaged model and decoupled control for the converter stations. An averaged model in Matlab/SIMULINK is validated against the detailed switched model in EMTDC/PSCAD by comparing the responses following small and large disturbances (e.g., faults on the dc side). Modal analysis is performed to identify the nature and root cause of the dynamic responses. Interaction between a multimachine ac system and an MTDC grid is examined following faults on the ac and dc sides and outage of converters. It is shown that the cause of instability in certain cases could only be attributed to the dc-side state variables. An averaged model of the converter along with the dc cable network is shown to be essential to analyze the stability and dynamics of combined ac-MTDC grids.
Keywords
modal analysis; power convertors; power grids; power system stability; EMTDC; Matlab/SIMULINK; PSCAD; VSC MTDC grids; converter stations; dc cable network; dc cables; dc-side unbalance studies; decoupled control; distributed pi-section models; dynamic representation; dynamic responses; general asymmetric bipole converter configuration; generic modeling framework; metallic return circuit; modal analysis; multiterminal dc grid; pole converters; stability analysis; standard multimachine ac system models; transient simulation; voltage-source converter; Mathematical model; Modal analysis; Power conversion; Power system modeling; Power system stability; Stability analysis; Modal analysis; multiterminal dc (MTDC); participation factor; stability; voltage-source converter (VSC);
fLanguage
English
Journal_Title
Power Delivery, IEEE Transactions on
Publisher
ieee
ISSN
0885-8977
Type
jour
DOI
10.1109/TPWRD.2011.2165735
Filename
6026937
Link To Document