Title :
Examination of an Interior Permanent Magnet Type Axial Gap Motor for the Hybrid Electric Vehicle
Author :
Arakawa, Takeshi ; Takemoto, Masatsugu ; Ogasawara, Satoshi ; Inoue, Ken ; Ozaki, Osamu ; Hojo, Hiroki ; Mitani, Hitoshi
Author_Institution :
Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo, Japan
Abstract :
Hybrid electric vehicles (HEVs) that emit less carbon dioxide have attracted much attention and rapidly become widespread, but further popularization of HEVs requires further technical advancement of mounted traction motors. Accordingly, our research group focuses on axial gap motors that can realize high torque density. In this paper, an axial gap motor with a novel interior permanent magnet (IPM) rotor structure is proposed and an examination of the proposed motor at the actual motor size of an HEV is presented. For comparison, we selected the newest radial gap-type 60 kW IPM synchronous motor equipped in the third-generation Toyota Prius. Under the condition that the size of the proposed motor be the same as the comparison motor, we confirmed through three-dimensional finite-element analysis that the proposed motor could output twice the maximum torque of the comparison motor. In addition, a comparison was made with a previously reported conventional IPM-type axial gap motor, and the proposed motor was found to be more effective in generating reluctance torque. Moreover, the proposed motor exhibited sufficient durability to irreversible demagnetization of the permanent magnets, to stress caused by rotating the rotor, and to unbalanced electromagnetic forces caused by axial rotor eccentricity.
Keywords :
finite element analysis; hybrid electric vehicles; permanent magnet motors; synchronous motors; torque; traction motors; HEV; IPM rotor structure; carbon dioxide; electromagnetic forces; hybrid electric vehicle; interior permanent magnet rotor structure; interior permanent magnet-type axial gap motor; irreversible demagnetization; mounted traction motors; radial gap-type IPM synchronous motor; reluctance torque; third-generation Toyota Prius; three-dimensional finite element analysis; torque density; Permanent magnet motors; Permanent magnets; Reluctance motors; Rotors; Torque; Traction motors; Axial gap motor; hybrid electric vehicle; interior permanent magnet rotor structure; permanent magnet synchronous motor;
Journal_Title :
Magnetics, IEEE Transactions on
DOI :
10.1109/TMAG.2011.2150206