DocumentCode :
1330191
Title :
Enhanced Exchange Coupling in TiO _{2} -Doped FePt-C Nanocomposite Thin Films Induced by Surfactant Mediated Growth
Author :
Zhou, Tie Jun ; Cher, Kelvin M. ; Hu, Jiang Feng ; Lim, Byong Chan ; Lwin, P.W. ; Shi, Jian Zhong
Author_Institution :
Data Storage Inst., A*STAR (Agency for Sci., Technol., & Res.), Singapore, Singapore
Volume :
47
Issue :
10
fYear :
2011
Firstpage :
3300
Lastpage :
3303
Abstract :
We reported the TiO2 doping effects on the microstructure and magnetic properties of FePt-C nanocomposite films (dual doping of C and TiO2). X-ray diffraction measurements revealed that the (001) orientation was well kept and there was no observable deterioration in chemical ordering degree, indicating a negligible change in anisotropy energy with increased TiO2 doping. The coercivity of FePt-C-TiO2 films decreased, while the slope of the hysteresis loops increased, with TiO2 volume fraction, implying an enhanced exchange coupling induced by TiO2 doping. Angular-dependent switching fields of FePt-C-TiO2 films depicted that the reversal mode was changed from coherent-rotation dominated to wall-motion dominated, possibly resulting from the enhanced exchange coupling. Cross-sectional transmission electron microscope images showed that the grain boundaries became less clear and grains either coalesced or contacted each other at increased TiO2 doping. The compositional-depth profile revealed that the C was pushed onto the film surface due to TiO2 doping. A surfactant mediated growth model was proposed to account for the observed enhancement of exchange coupling and the change of microstructure. This study showed that to reduce grain size and promote grain isolation, a proper selection of boundary materials with different surface free energy is needed.
Keywords :
X-ray diffraction; carbon; coercive force; doping; exchange interactions (electron); free energy; grain boundaries; iron compounds; magnetic anisotropy; magnetic hysteresis; nanocomposites; surfactants; thin films; titanium compounds; transmission electron microscopy; FePt-C:TiO2; X-ray diffraction measurements; angular-dependent switching fields; anisotropy energy; boundary materials; coercivity; cross-sectional transmission electron microscope; doping effects; exchange coupling; grain boundaries; grain isolation; hysteresis loops; magnetic properties; microstructure; nanocomposite thin films; surface free energy; surfactant mediated growth; Carbon; Couplings; Doping; Grain size; Magnetic hysteresis; Magnetic recording; Magnetic resonance imaging; Exchange coupling; FePt media; surfactant mediated growth; switching field;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2011.2158083
Filename :
6027747
Link To Document :
بازگشت