DocumentCode :
1330787
Title :
Some bounds for the minimum length of binary linear codes of dimension nine
Author :
Bouyukliev, Iliya ; Guritman, Sugi ; Vavrek, Vesselin
Author_Institution :
Inst. of Math., Bulgarian Acad. of Sci., Tarnovo, Bulgaria
Volume :
46
Issue :
3
fYear :
2000
fDate :
5/1/2000 12:00:00 AM
Firstpage :
1053
Lastpage :
1056
Abstract :
We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)⩽76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes
Keywords :
binary codes; linear codes; binary linear codes; dimension nine codes; minimum distance; minimum length bounds; Block codes; Convolutional codes; Lattices; Linear code; Maximum likelihood decoding; Maximum likelihood detection; Maximum likelihood estimation; Notice of Violation; Vectors; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.841184
Filename :
841184
Link To Document :
بازگشت