Title :
Wireless Sensor Networks for Distributed Chemical Sensing: Addressing Power Consumption Limits With On-Board Intelligence
Author :
De Vito, Saverio ; Palma, Paola Di ; Ambrosino, Carmine ; Massera, Ettore ; Burrasca, Gianbattista ; Miglietta, Maria L. ; Francia, Girolamo Di
Author_Institution :
Portici Res. Center, Italian Nat. Agency for New Technol., Energy & Sustainable Dev. (ENEA), Portici, Italy
fDate :
4/1/2011 12:00:00 AM
Abstract :
Chemicals detection and quantification is extremely important for ensuring safety and security in multiple application domains like smart environments, building automation, etc. Characteristics of chemical signal propagation make single point of measure approach mostly inefficient. Distributed chemical sensing with wireless platforms may be the key for reconstructing chemical images of sensed environment but its development is currently hampered by technological limits on solid-state sensors power management. We present the implementation of power saving sensor censoring strategies on a novel wireless electronic nose platform specifically designed for cooperative chemical sensing and based on TinyOS. An on-board sensor fusion component complements its software architecture with the capability of locally estimate air quality and chemicals concentrations. Each node is hence capable to decide the informative content of sampled data extending the operative lifespan of the entire network. Actual power savings are modeled and estimated with a measurement approach in experimental scenarios.
Keywords :
cooperative systems; electronic noses; energy conservation; intelligent sensors; sensor fusion; software architecture; wireless sensor networks; TinyOS; air quality; chemical concentration estimation; chemical detection; chemical image reconstruction; chemical signal propagation; cooperative chemical sensing; distributed chemical sensing; on-board intelligence; on-board sensor fusion; power consumption; power management; power saving sensor; software architecture; solid-state sensor; wireless electronic nose platform; wireless sensor networks; Electronic noses; power saving; sensor censoring; wireless chemical sensing;
Journal_Title :
Sensors Journal, IEEE
DOI :
10.1109/JSEN.2010.2077277