Title :
Delay-Constrained Optimal Link Scheduling in Wireless Sensor Networks
Author :
Wang, Qing ; Wu, Dapeng Oliver ; Fan, Pingyi
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Abstract :
We consider the optimal link scheduling problem in wireless sensor networks. The optimal link scheduler under our consideration is intended to assign time slots to different users to minimize channel usage subject to constraints on data rate, delay bound, and delay bound violation probability; we study the problem under fading channels and a signal-to-interference-plus-noise-ratio (SINR)-based interference model. To the best of our knowledge, this problem has not been studied previously. We use the effective capacity model to formulate the optimal link scheduling as a mixed-integer optimization problem. We first discuss a simple case, namely, the scheduling with a fixed power allocation, and then extend to the case with variable transmit power. Moreover, because the mixed-integer optimization problem is NP-hard, we propose a computationally feasible column-generation-based iterative algorithm to search for a suboptimal solution to the problem. Finally, we design a medium access control (MAC) protocol to implement our optimal link scheduling strategy in practical wireless networks. Simulation results demonstrate that our proposed scheme achieves a larger throughput, a larger admission region, and a higher power efficiency than a benchmark time-division multiple-access (TDMA) system.
Keywords :
computational complexity; delays; fading channels; integer programming; scheduling; time division multiple access; wireless sensor networks; NP-hard problem; SINR-based interference model; data rate; delay bound violation probability; delay-constrained optimal link scheduling; fading channels; fixed power allocation; medium access control protocol; mixed-integer optimization problem; optimal link scheduler; optimal link scheduling problem; signal-to-interference-plus-noise-ratio; time-division multiple-access system; wireless sensor networks; Delay; Interference; Optimal scheduling; Quality of service; Scheduling; Signal to noise ratio; Wireless sensor networks; Column generation; delay constraint; effective capacity (EC); link scheduling;
Journal_Title :
Vehicular Technology, IEEE Transactions on
DOI :
10.1109/TVT.2010.2080695