DocumentCode :
133790
Title :
Characterization for photovoltaic generation systems via Higher Order Wavelet Neural Networks
Author :
Ricalde, Luis J. ; Rubio, Erika H. ; Ordonez, Ernesto ; Ricalde, Lifter O.
Author_Institution :
Univ. Autonoma de Yucatan, Merida, Mexico
fYear :
2014
fDate :
3-7 Aug. 2014
Firstpage :
508
Lastpage :
513
Abstract :
This paper focusses on applications of neural networks for forecasting in photovoltaic arrays. A Higher Order Wavelet Neural Network trained with an extended Kalman Filter training algorithm is implemented for data modeling in smart grids. The length of the regression vector is determined using the Cao methodology. The applicability of this architecture is illustrated via simulation using real data values from Photovoltaic modules.
Keywords :
Kalman filters; data models; electric power generation; nonlinear filters; photovoltaic power systems; power engineering computing; regression analysis; smart power grids; solar cell arrays; wavelet neural nets; Cao methodology; data modeling; extended Kalman filter training algorithm; higher order wavelet neural networks; photovoltaic array forecasting; photovoltaic generation systems; photovoltaic modules; regression vector; smart grids; Image coding; Kalman filters; Kalman training; Neural networks; Photovoltaic Module; Power generation forecasting; Wavelet Transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World Automation Congress (WAC), 2014
Conference_Location :
Waikoloa, HI
Type :
conf
DOI :
10.1109/WAC.2014.6936021
Filename :
6936021
Link To Document :
بازگشت