Title :
Si/sub 1-x-y/GexCy-channel p-MOSFET´s with improved thermal stability
Author :
Mocuta, A.C. ; Greve, D.W.
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
fDate :
6/1/2000 12:00:00 AM
Abstract :
We report the fabrication of heterostructure Si/sub 1-x-y/Ge/sub x/C/sub y/ channel p-MOSFETs with low-carbon Si/sub 1-x-y/Ge/sub x/C/sub y/ channels. The use of low carbon mole fraction (y=0.002) has only a small effect (/spl Lt/kT) on the valence band offset. A carbon mole fraction of this value improves the thermal stability of the channel region and makes it possible to use conventional thermal oxidation and ion implant annealing without causing layer relaxation. A peak room-temperature hole mobility of 200 cm/sup 2//Vs was measured in a device with a 30-nm channel and a germanium mole fraction ramped from 10% to 40%.
Keywords :
Ge-Si alloys; MOS capacitors; MOSFET; annealing; carbon; hole mobility; oxidation; semiconductor device measurement; semiconductor materials; thermal stability; 30 nm; Ge mole fraction; Si/sub 1-x-y/Ge/sub x/C/sub y/-channel p-MOSFET; SiGeC; channel region; heterostructure Si/sub 1-x-y/Ge/sub x/C/sub y/ channel p-MOSFET; ion implant annealing; low carbon mole fraction; peak room-temperature hole mobility; thermal oxidation; thermal stability; valence band offset; Annealing; CMOS process; Epitaxial layers; Germanium; Implants; Lattices; MOSFET circuits; Oxidation; Silicon carbide; Thermal stability;
Journal_Title :
Electron Device Letters, IEEE