DocumentCode :
1339770
Title :
Intent Inference and Syntactic Tracking with GMTI Measurements
Author :
Wang, Alex ; Krishnamurthy, Vikram ; Balaji, Bhashyam
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada
Volume :
47
Issue :
4
fYear :
2011
fDate :
10/1/2011 12:00:00 AM
Firstpage :
2824
Lastpage :
2843
Abstract :
In conventional target tracking systems, human operators use the estimated target tracks to make higher level inference of the target behaviour/intent. The work presented here develops syntactic filtering algorithms that assist human operators by extracting spatial patterns from target tracks to identify suspicious/anomalous spatial trajectories. The targets´ spatial trajectories are modeled by a stochastic context free grammar (SCFG) and a switched mode state space model. Bayesian filtering algorithms for SCFGs are presented for extracting the syntactic structure and illustrated for a ground moving target indicator (GMTI) radar example. The performance of the algorithms is tested with the experimental data collected using DRDC Ottawa´s X-band Wideband Experimental Airborne Radar (XWEAR).
Keywords :
Bayes methods; context-free grammars; filtering theory; ground penetrating radar; radar tracking; state-space methods; stochastic processes; target tracking; Bayesian filtering algorithms; GMTI radar; ground moving target indicator; spatial patterns extraction; spatial trajectory identification; state space model; stochastic context free grammar; syntactic filtering algorithms; target tracking; Bayesian methods; Hidden Markov models; Radar tracking; Syntactics; Target tracking; Trajectory;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2011.6034667
Filename :
6034667
Link To Document :
بازگشت