DocumentCode :
1340186
Title :
The boundary element method in the forward and inverse problem of electrical impedance tomography
Author :
De Munck, Jan C. ; Faes, Theo J C ; Heethaar, Rob M.
Author_Institution :
Lab. of Med. Phys. & Inf., Vrije Univ., Amsterdam, Netherlands
Volume :
47
Issue :
6
fYear :
2000
fDate :
6/1/2000 12:00:00 AM
Firstpage :
792
Lastpage :
800
Abstract :
A new formulation of the reconstruction problem of electrical impedance tomography (EIT) is proposed. Instead of reconstructing a complete two-dimensional picture, a parameter representation of the gross anatomy is formulated, of which the optimal parameters are determined by minimizing a cost function. The two great advantages of this method are that the number of unknown parameters of the inverse problem is drastically reduced and that quantitative information of interest (e.g., lung volume) is estimated directly from the data, without image segmentation steps. The forward problem of EIT is to compute the potentials at the voltage measuring electrodes, for a given set of current injection electrodes and a given conductivity geometry. Here, it is proposed to use an improved boundary clement method (BEM) technique to solve the forward problem, in which flat boundary elements are replaced by polygonal ones. From a comparison with the analytical solution of the concentric circle model, it appears that the use of polygonal elements greatly improves the accuracy of the BEM, without increasing the computation time. In this formulation, the inverse problem is a nonlinear parameter estimation problem with a limited number of parameters. Variants of Powell´s and the simplex method are used to minimize the cost function. The applicability of this solution of the EIT problem was tested in a series of simulation studies. In these studies, EIT data were simulated using a standard conductor geometry and it was attempted to find back this geometry from random starting values. In the inverse algorithm, different current injection and voltage measurement schemes and different cost functions were compared. In a simulation study, it was demonstrated that a systematic error in the assumed lung conductivity results in a proportional error in the lung cross sectional area. It appears that the authors´ parametric formulation of the inverse problem leads to a stable minimization problem- - , with a high reliability, provided that the signal-to-noise ratio is about ten or higher.
Keywords :
boundary-elements methods; electric impedance imaging; image reconstruction; image segmentation; inverse problems; minimisation; parameter estimation; concentric circle model; conductivity geometry; cost function minimization; electrical impedance tomography forward problem; electrical impedance tomography inverse problem; flat boundary elements; lung volume; medical diagnostic imaging; proportional error; signal-to-noise ratio; simplex method; stable minimization problem; systematic error; voltage measuring electrodes; Boundary element methods; Conductivity; Cost function; Electrodes; Image reconstruction; Impedance; Inverse problems; Lungs; Tomography; Voltage measurement; Algorithms; Animals; Aorta; Computer Simulation; Electric Impedance; Electrodes; Humans; Lung; Models, Biological; Nonlinear Dynamics; Signal Processing, Computer-Assisted; Tomography;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/10.844230
Filename :
844230
Link To Document :
بازگشت