DocumentCode :
1341053
Title :
Locality-Sensitive Hashing for Chi2 Distance
Author :
Gorisse, David ; Cord, Matthieu ; Precioso, Frederic
Author_Institution :
Yakaz Lab., Paris, France
Volume :
34
Issue :
2
fYear :
2012
Firstpage :
402
Lastpage :
409
Abstract :
In the past 10 years, new powerful algorithms based on efficient data structures have been proposed to solve the problem of Nearest Neighbors search (or Approximate Nearest Neighbors search). If the Euclidean Locality Sensitive Hashing algorithm, which provides approximate nearest neighbors in a euclidean space with sublinear complexity, is probably the most popular, the euclidean metric does not always provide as accurate and as relevant results when considering similarity measure as the Earth-Mover Distance and χ2 distances. In this paper, we present a new LSH scheme adapted to χ2 distance for approximate nearest neighbors search in high-dimensional spaces. We define the specific hashing functions, we prove their local-sensitivity, and compare, through experiments, our method with the Euclidean Locality Sensitive Hashing algorithm in the context of image retrieval on real image databases. The results prove the relevance of such a new LSH scheme either providing far better accuracy in the context of image retrieval than euclidean scheme for an equivalent speed, or providing an equivalent accuracy but with a high gain in terms of processing speed.
Keywords :
approximation theory; data structures; image retrieval; pattern classification; visual databases; Chi2 distance; Euclidean locality sensitive hashing algorithm; data structures; earth mover distance; euclidean metric; euclidean space; image databases; image retrieval; nearest neighbors approximation; nearest neighbors search; Approximation algorithms; Approximation methods; Databases; Histograms; Information retrieval; Measurement; Semantics; Sublinear algorithm; approximate nearest neighbors; chi2 distance; image retrieval.; locality sensitive hashing;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2011.193
Filename :
6035720
Link To Document :
بازگشت