Title :
Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions
Author :
Sierawski, Brian D. ; Pellish, Jonathan A. ; Reed, Robert A. ; Schrimpf, Ronald D. ; Warren, Kevin M. ; Weller, Robert A. ; Mendenhall, Marcus H. ; Black, Jeffrey D. ; Tipton, Alan D. ; Xapsos, Michael A. ; Baumann, Robert C. ; Deng, Xiaowei ; Campola, Mi
Author_Institution :
Inst. for Space & Defense Electron., Vanderbilt Univ., Nashville, TN, USA
Abstract :
Direct ionization from low energy protons is shown to cause upsets in a 65-nm bulk CMOS SRAM, consistent with results reported for other deep submicron technologies. The experimental data are used to calibrate a Monte Carlo rate prediction model, which is used to evaluate the importance of this upset mechanism in typical space environments. For the ISS orbit and a geosynchronous (worst day) orbit, direct ionization from protons is a major contributor to the total error rate, but for a geosynchronous (solar min) orbit, the proton flux is too low to cause a significant number of events. The implications of these results for hardness assurance are discussed.
Keywords :
CMOS memory circuits; Monte Carlo methods; SRAM chips; calibration; radiation hardening (electronics); CMOS SRAM; ISS orbit; Monte Carlo rate prediction model; calibration; deep submicron technologies; direct ionization; geosynchronous orbit; hardness assurance; low-energy proton impact; proton flux; single event upset; space environments; test methods; total error rate; CMOS technology; Error analysis; Ionization; Monte Carlo methods; Predictive models; Protons; Random access memory; Semiconductor device modeling; Space technology; Testing; Direct ionization; Monte Carlo; hardness-assurance; proton; single event upset (SEU); soft error rate;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2009.2032545