DocumentCode :
1343714
Title :
Parameterization of orthogonal wavelet transforms and their implementation
Author :
Rieder, Peter ; Götze, Jürgen ; Nossek, Josef A. ; Burrus, C. Sidney
Author_Institution :
Inst. of Network Theory & Circuit Design, Tech. Univ. Munchen, Germany
Volume :
45
Issue :
2
fYear :
1998
fDate :
2/1/1998 12:00:00 AM
Firstpage :
217
Lastpage :
226
Abstract :
In this paper, a method for parameterizing orthogonal wavelet transforms is presented. The parameter space is given by the rotation angles of the orthogonal 2×2 rotations used in the lattice filters realizing the stages of the wavelet transform. Different properties of orthogonal wavelet transforms can be expressed in this parameter space. Then, the parameter space is restricted to the set of rotation angles given by simple orthogonal μ-rotations, i,e., the set of rotation angles αk=arctan 2-k (k∈{0, 1,···, w} where w is the word length). An orthogonal μ-rotation is essentially one recursion step of the CORDIC algorithm. The wavelet transforms in the reduced parameter space are amenable to a very simple implementation. Only a small number of shift and add operations instead of fully fledged multipliers is required
Keywords :
filtering theory; lattice filters; wavelet transforms; CORDIC algorithm; lattice filters; orthogonal 2×2 rotations; orthogonal wavelet transforms; parameter space; parameterization; recursion step; rotation angles; shift/add operations; Circuit synthesis; Discrete wavelet transforms; Filters; Frequency; Image coding; Lattices; Optimization methods; Signal processing algorithms; Very large scale integration; Wavelet transforms;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7130
Type :
jour
DOI :
10.1109/82.661654
Filename :
661654
Link To Document :
بازگشت