DocumentCode :
1348431
Title :
Detecting Carried Objects from Sequences of Walking Pedestrians
Author :
Damen, Dima ; Hogg, David
Author_Institution :
Dept. of Comput. Sci., Univ. of Bristol, Bristol, UK
Volume :
34
Issue :
6
fYear :
2012
fDate :
6/1/2012 12:00:00 AM
Firstpage :
1056
Lastpage :
1067
Abstract :
This paper proposes a method for detecting objects carried by pedestrians, such as backpacks and suitcases, from video sequences. In common with earlier work [14], [16] on the same problem, the method produces a representation of motion and shape (known as a temporal template) that has some immunity to noise in foreground segmentations and phase of the walking cycle. Our key novelty is for carried objects to be revealed by comparing the temporal templates against view-specific exemplars generated offline for unencumbered pedestrians. A likelihood map of protrusions, obtained from this match, is combined in a Markov random field for spatial continuity, from which we obtain a segmentation of carried objects using the MAP solution. We also compare the previously used method of periodicity analysis to distinguish carried objects from other protrusions with using prior probabilities for carried-object locations relative to the silhouette. We have reimplemented the earlier state-of-the-art method [14] and demonstrate a substantial improvement in performance for the new method on the PETS2006 data set. The carried-object detector is also tested on another outdoor data set. Although developed for a specific problem, the method could be applied to the detection of irregularities in appearance for other categories of object that move in a periodic fashion.
Keywords :
Markov processes; image motion analysis; image representation; image segmentation; image sequences; maximum likelihood estimation; object detection; random processes; video signal processing; MAP solution; Markov random field; carried object detection; carried object segmentation; foreground segmentation; irregularity detection; likelihood map; motion representation; shape representation; unencumbered pedestrian; video sequence; walking pedestrian; Cameras; Correlation; Detectors; Lattices; Legged locomotion; Noise; Trajectory; Baggage detection; carried-objects detection; periodicity analysis.; silhouette analysis; template matching; temporal templates; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Markov Chains; Motion; Pattern Recognition, Automated; Walking;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2011.205
Filename :
6042880
Link To Document :
بازگشت