DocumentCode :
1348688
Title :
On the asymptotics of the Lyapunov spectrum under singular perturbations
Author :
Grammel, Goetz ; Shi, Peng
Author_Institution :
Inst. fur Inf. und Praktische Math., Kiel Univ., Germany
Volume :
45
Issue :
3
fYear :
2000
fDate :
3/1/2000 12:00:00 AM
Firstpage :
565
Lastpage :
569
Abstract :
We investigate the problem of asymptotics of Lyapunov exponents for a class of singularly perturbed nonlinear systems. We define the maximal and minimal Lyapunov exponents for the underlying systems and show, via an averaging technique, that under certain conditions, the extremal Lyapunov exponents of the original system converge to the extremal Lyapunov exponents of the averaged slow subsystem when the singular perturbation parameter tends to zero. For low-dimensional systems, the existence of Lipschitz, continuous composite state feedbacks, which asymptotically provide the minimal Lyapunov exponents, can be shown. An example is given to illustrate the potential of the proposed technique and show that the designed controller is robust for sufficiently small perturbations
Keywords :
Lyapunov methods; asymptotic stability; nonlinear control systems; singularly perturbed systems; state feedback; Lipschitz continuous composite state feedbacks; Lyapunov spectrum; asymptotics; averaging technique; low-dimensional systems; maximal Lyapunov exponent; minimal Lyapunov exponent; singularly perturbed nonlinear systems; Integral equations;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.847745
Filename :
847745
Link To Document :
بازگشت