DocumentCode :
1348913
Title :
Fully Automated Attenuation Measurement and Motion Correction in FLIP Image Sequences
Author :
van de Giessen, Martijn ; van der Laan, A. ; Hendriks, Emile A. ; Vidorreta, Marta ; Reiber, Johan H C ; Jost, Carolina R. ; Tanke, Hans J. ; Lelieveldt, Boudewijn P F
Author_Institution :
Div. of Image Process. (LKEB), Leiden Univ. Med. Center, Leiden, Netherlands
Volume :
31
Issue :
2
fYear :
2012
Firstpage :
461
Lastpage :
473
Abstract :
Fluorescence loss in photobleaching (FLIP) is a method to study compartment connectivity in living cells. A FLIP sequence is obtained by alternatively bleaching a spot in a cell and acquiring an image of the complete cell. Connectivity is estimated by comparing fluorescence signal attenuation in different cell parts. The measurements of the fluorescence attenuation are hampered by the low signal to noise ratio of the FLIP sequences, by sudden sample shifts and by sample drift. This paper describes a method that estimates the attenuation by modeling photobleaching as exponentially decaying signals. Sudden motion artifacts are minimized by registering the frames of a FLIP sequence to target frames based on the estimated model and by removing frames that contain deformations. Linear motion (sample drift) is reduced by minimizing the entropy of the estimated attenuation coefficients. Experiments on 16 in vivo FLIP sequences of muscle cells in Drosophila show that the proposed method results in fluorescence attenuations similar to the manually identified gold standard, but with standard deviations of approximately 50 times smaller. As a result of this higher precision, cell compartment edges and details such as cell nuclei become clearly discernible. The main value of this method is that it uses a model of the bleaching process to correct motion and that the model based fluorescence intensity and attenuation estimates can be interpreted easily. The proposed method is fully automatic, and runs in approximately one minute per sequence, making it suitable for unsupervised batch processing of large data series.
Keywords :
bioluminescence; cellular effects of radiation; entropy; fluorescence; image registration; image sequences; medical image processing; motion estimation; muscle; optical saturable absorption; unsupervised learning; Drosophila; FLIP image sequence; attenuation coefficients; compartment connectivity; entropy; fluorescence loss; fluorescence signal attenuation; fully automated attenuation measurement; image registration; living cells; motion correction; muscle cells; photobleaching; unsupervised batch processing; Attenuation; Bleaching; Entropy; Kernel; Muscles; Noise; Proteins; Biomedical image processing; cell imaging; entropy minimization; fluorescence loss in photobleaching (FLIP); fluorescence microscopy; image registration; motion correction; Algorithms; Animals; Artifacts; Drosophila melanogaster; Fluorescence Recovery After Photobleaching; Image Enhancement; Image Interpretation, Computer-Assisted; Motion; Muscle Fibers, Skeletal; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2011.2171497
Filename :
6043908
Link To Document :
بازگشت