DocumentCode :
1349545
Title :
Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines
Author :
Heikkinen, Ville ; Tokola, Timo ; Parkkinen, Jussi ; Korpela, Ilkka ; Jääskeläinen, Timo
Author_Institution :
InFotonics Center, Univ. of Joensuu, Joensuu, Finland
Volume :
48
Issue :
3
fYear :
2010
fDate :
3/1/2010 12:00:00 AM
Firstpage :
1355
Lastpage :
1364
Abstract :
The information content of remotely sensed data depends primarily on the spatial and spectral properties of the imaging device. This paper focuses on the classification performance of the different spectral features (hyper- and multispectral measurements) with respect to three tree species. The Support Vector Machine was chosen as the classification algorithm for these features. A simulated optical radiation model was constructed to evaluate the identification performance of the given multispectral system for the tree species, and the effects of spectral-band selection and data preprocessing were studied in this setting. Simulations were based on the reflectance measurements of the pine (Pinus sylvestris L.), spruce [ Picea abies (L.) H. Karst.], and birch trees (Betula pubescens Ehrh. and Betula pendula Roth). Leica ADS80 airborne sensor with four spectral bands (channels) was used as a fixed multispectral sensor system that leads to response values for the at-sensor radiance signal. Results suggest that this four-band system has inadequate classification performance for the three tree species. The simulations demonstrate on average a 5-15 percentage points improvement in classification performance when the Leica system is combined with one additional spectral band. It is also demonstrated for the Leica data that feature mapping through a Mahalanobis kernel leads to a 5-10 percentage points improvement in classification performance when compared with other kernels.
Keywords :
feature extraction; forestry; geophysical image processing; image classification; multidimensional signal processing; spectral analysis; support vector machines; vegetation; vegetation mapping; Betula pendula Roth; Betula pubescens Ehrh; Leica ADS80 airborne sensor; Mahalanobis kernel; Picea abies; Pinus sylvestris L; at-sensor radiance signal; birch tree; feature mapping; fixed multispectral sensor system; hyperspectral measurement; information content; pine tree; reflectance measurements; remotely sensed data; simulated multispectral imagery; simulated optical radiation model; spectral features; spectral-band selection; spruce tree; support vector machine; tree species classification; Feature extraction; image sensors; pattern classification; radiometry; remote sensing;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2009.2032239
Filename :
5345831
Link To Document :
بازگشت