Title :
Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations
Author :
Ting, Ching-Hua ; Mahfouf, Mahdi ; Nassef, Ahmed ; Linkens, Derek A. ; Panoutsos, George ; Nickel, Peter ; Roberts, Adam C. ; Hockey, Robert G J
Author_Institution :
Dept. of Biomechatronic Eng., Nat. Chiayi Univ., Chiayi, Taiwan
fDate :
3/1/2010 12:00:00 AM
Abstract :
This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects´ optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.
Keywords :
adaptive control; aerospace control; computerised monitoring; control engineering computing; man-machine systems; physiology; process control; psychology; adaptive control; adaptive fuzzy model; cabin air management system; heart-rate variability; online monitoring; operator functional state; psychophysiological measures; real-time adaptive automation system; safety-critical human-machine systems; simulated process control operations; Adaptive Automation (AA); man–machine systems; neural-fuzzy modeling and control; operator functional state (OFS); psychophysiology; signal processing;
Journal_Title :
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on
DOI :
10.1109/TSMCA.2009.2035301