Title :
Differential Evolution: A Survey of the State-of-the-Art
Author :
Das, Swagatam ; Suganthan, Ponnuthurai Nagaratnam
Author_Institution :
Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India
Abstract :
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current-generation population members with the scaled differences of randomly selected and distinct population members. Therefore, no separate probability distribution has to be used for generating the offspring. Since its inception in 1995, DE has drawn the attention of many researchers all over the world resulting in a lot of variants of the basic algorithm with improved performance. This paper presents a detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far. Also, it provides an overview of the significant engineering applications that have benefited from the powerful nature of DE.
Keywords :
evolutionary computation; optimisation; random processes; stochastic processes; constrained optimization; differential evolution; evolutionary algorithm; large scale uncertain optimization; multiobjective optimization; random selection; stochastic real-parameter optimization algorithm; Derivative-free optimization; differential evolution (DE); direct search; evolutionary algorithms (EAs); genetic algorithms (GAs); metaheuristics; particle swarm optimization (PSO);
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2010.2059031