DocumentCode :
135133
Title :
An energy-efficient routing technique for privacy preservation of assets monitored with WSN
Author :
Manjula, R. ; Datta, Raja
Author_Institution :
Dept. of Electron. & Electr. Commun. Eng., Indian Inst. of Technol., Kharagpur, Kharagpur, India
fYear :
2014
fDate :
Feb. 28 2014-March 2 2014
Firstpage :
325
Lastpage :
330
Abstract :
Wireless Sensor Networks (WSNs) are deployed to monitor the assets (endangered species) and report the locations of these assets to the Base Station (BS) also known as Sink. The hunter (adversary) attacks the network at one or two hops away from the Sink, eavesdrops the wireless communication links and traces back to the location of the asset to capture them. The existing solutions proposed to preserve the privacy of the assets lack in energy efficiency as they rely on random walk routing technique and fake packet injection technique so as to obfuscate the hunter from locating the assets. In this paper we present an energy efficient privacy preserved routing algorithm where the event (i.e., asset) detected nodes called as source nodes report the events´ location information to the Base Station using phantom source (also known as phantom node) concept and a-angle anonymity concept. Routing is done using existing greedy routing protocol. Comparison through simulations shows that our solution reduces the energy consumption and delay while maintaining the same level of privacy as that of two existing popular techniques.
Keywords :
data privacy; energy conservation; routing protocols; telecommunication power management; telecommunication security; wireless sensor networks; WSN; asset monitoring; base station; endangered species monitoring; energy efficient routing technique; fake packet injection technique; phantom node; phantom source; privacy preservation; wireless sensor network; Base stations; Delays; Monitoring; Phantoms; Privacy; Routing; Routing protocols;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Students' Technology Symposium (TechSym), 2014 IEEE
Conference_Location :
Kharagpur
Print_ISBN :
978-1-4799-2607-7
Type :
conf
DOI :
10.1109/TechSym.2014.6808069
Filename :
6808069
Link To Document :
بازگشت