DocumentCode :
1351767
Title :
A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing
Author :
Sazonov, Edward S. ; Fontana, Juan M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Alabama, Tuscaloosa, AL, USA
Volume :
12
Issue :
5
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
1340
Lastpage :
1348
Abstract :
Objective and automatic sensor systems to monitor ingestive behavior of individuals arise as a potential solution to replace inaccurate method of self-report. This paper presents a simple sensor system and related signal processing and pattern recognition methodologies to detect periods of food intake based on non-invasive monitoring of chewing. A piezoelectric strain gauge sensor was used to capture movement of the lower jaw from 20 volunteers during periods of quiet sitting, talking and food consumption. These signals were segmented into non-overlapping epochs of fixed length and processed to extract a set of 250 time and frequency domain features for each epoch. A forward feature selection procedure was implemented to choose the most relevant features, identifying from 4 to 11 features most critical for food intake detection. Support vector machine classifiers were trained to create food intake detection models. Twenty-fold cross-validation demonstrated per-epoch classification accuracy of 80.98% and a fine time resolution of 30 s. The simplicity of the chewing strain sensor may result in a less intrusive and simpler way to detect food intake. The proposed methodology could lead to the development of a wearable sensor system to assess eating behaviors of individuals.
Keywords :
biosensors; computerised monitoring; feature extraction; frequency-domain analysis; patient monitoring; pattern classification; piezoelectric devices; signal classification; strain gauges; strain sensors; support vector machines; SVM classifier; automatic food intake detection; automatic sensor system; chewing strain sensor; forward feature selection procedure; frequency domain analysis; noninvasive chewing monitoring; nonoverlapping epoch; pattern recognition; piezoelectric strain gauge sensor; signal processing; signal segmentation; support vector machine; time resolution; wearable sensor system; Accuracy; Feature extraction; Monitoring; Strain; Support vector machine classification; Training; Chewing (mastication); food intake detection; monitoring of ingestive behavior (MIB); pattern recognition; wearable sensor;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2011.2172411
Filename :
6047558
Link To Document :
بازگشت