DocumentCode :
1352366
Title :
Invariant spaces at infinity of linear systems application to block decoupling
Author :
Commault, C. ; Dion, J.M. ; Torres, J.
Author_Institution :
Lab. d´´Autom. de Grenoble, Saint-Martin-d´´Heres, France
Volume :
35
Issue :
5
fYear :
1990
fDate :
5/1/1990 12:00:00 AM
Firstpage :
618
Lastpage :
623
Abstract :
The dynamic state feedback block decoupling problem in the general case, i.e. with singular or nonsingular input transformations, is solved. It is proven that the problem is solvable if the number of inputs is large enough. The main tools for this study are some invariant spaces associated with the columns infinite behavior of a rational matrix. It turns out that when the problem is solvable, it is also solvable with stability
Keywords :
feedback; linear systems; stability; state-space methods; block decoupling; dynamic state feedback; invariant spaces; linear systems; rational matrix; stability; Algebra; Eigenvalues and eigenfunctions; H infinity control; Linear systems; Polynomials; Roentgenium; Stability; State feedback;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.53511
Filename :
53511
Link To Document :
بازگشت