Author :
Cho, Soo-Hwan ; Jang, Gilsoo ; Kwon, Sae-Hyuk
Abstract :
Recently, many signal-processing techniques, such as fast Fourier transform, short-time Fourier transform, wavelet transform (WT), and wavelet packet transform (WPT), have been applied to detect, identify, and classify power-quality (PQ) disturbances. For research on PQ analysis, it is critical to apply the appropriate signal-processing techniques to solve PQ problems. In this paper, a new time-frequency analysis method, namely, the Gabor-Wigner transform (GWT), is introduced and applied to detect and identify PQ disturbances. Since GWT is an operational combination of the Gabor transform (GT) and the Wigner distribution function (WDF), it can overcome the disadvantages of both. GWT has two advantages which are that it has fewer cross-term problems than the WDF and higher clarity than the GT. Studies are presented which verify that the merits of GWT make it adequate for PQ analysis. In the case studies considered here, the various PQ disturbances, including voltage swell, voltage sag, harmonics, interharmonics, transients, voltage changes with multiple frequencies and voltage fluctuation, or flicker, will be thoroughly investigated by using this new time-frequency analysis method.
Keywords :
Wigner distribution; power supply quality; power system measurement; signal processing; time-frequency analysis; transforms; Gabor transform; Gabor-Wigner transform; Wigner distribution function; power quality disturbance; time-frequency analysis; Gabor transform (GT); Gabor-Wigner transform (GWT); Wigner distribution function (WDF); power-quality (PQ) analysis; time-frequency analysis;