DocumentCode :
1356214
Title :
Budget Allocation for Effective Data Collection in Predicting an Accurate DEA Efficiency Score
Author :
Wong, Wai Peng ; Jaruphongsa, Wikrom ; Lee, Loo Hay
Author_Institution :
Sch. of Manage., Univ. Sains Malaysia, Pulau, Malaysia
Volume :
56
Issue :
6
fYear :
2011
fDate :
6/1/2011 12:00:00 AM
Firstpage :
1235
Lastpage :
1246
Abstract :
We analyze how to allocate the budget for data collection effectively when data envelopment analysis (DEA) is used for predicting the efficiency. We formulate this problem under a Bayesian framework and propose two heuristics algorithms, i.e., a gradient-based algorithm and a hybrid GA algorithm to solve this optimization problem. Our results indicate that effective allocation of budget for data collection can greatly reduce the overall data collection effort in comparison with a uniform budget allocation.
Keywords :
data envelopment analysis; genetic algorithms; gradient methods; Bayesian framework; budget allocation; data collection; data envelopment analysis; gradient-based algorithm; heuristics algorithms; hybrid GA algorithm; optimization problem; Algorithm design and analysis; Approximation methods; Computational modeling; Data models; Monte Carlo methods; Resource management; Stochastic processes; Budget allocation; genetic algorithm; gradient search; optimal computing budget allocation algorithms (OCBA); stochastic data envelopment analysis (DEA);
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2010.2088870
Filename :
5605659
Link To Document :
بازگشت