DocumentCode :
1356676
Title :
Self-Monitoring and Self-Assessing Atomic Clocks
Author :
Chan, Yat C. ; Johnson, Walter A. ; Karuza, Sarunas K. ; Young, Albert M. ; Camparo, James C.
Author_Institution :
Aerosp. Corp., El Segundo, CA, USA
Volume :
59
Issue :
2
fYear :
2010
Firstpage :
330
Lastpage :
334
Abstract :
From digital communications to satellite navigation, remotely synchronized clocks play a role of primary importance. The failure of these clocks will lead to not only service interruptions, but also, in some cases involving satellite navigation, more dire consequences with potential loss of life. Consequently, ensuring the integrity of remote clocks is now an issue of considerable import. In this paper, we demonstrate that an atomic clock can autonomously assess its own frequency stability and integrity by comparing the phase of its output signal to a delayed version of itself in what is essentially an interferometric technique. Using a high-quality crystal oscillator, we demonstrate that fractional frequency jumps of 10-11 are easily observed and that a cesium atomic clock´s short-term Allan deviation can be measured without reference to another standard in a fully autonomous manner.
Keywords :
atomic clocks; crystal oscillators; atomic clocks; crystal oscillator; digital communications; interferometric technique; remotely synchronized clocks; satellite navigation; service interruptions; Allan variance; atomic clocks; precise timekeeping; quartz oscillators;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2009.2023817
Filename :
5223518
Link To Document :
بازگشت