DocumentCode :
1359280
Title :
Transcutaneous measurement and spectrum analysis of heart wall vibrations
Author :
Kanai, Hiroshi ; Sato, Michie ; Koiwa, Yoshiro ; Chubachi, Noriyoshi
Author_Institution :
Dept. of Electr. Eng., Tohoku Univ., Sendai, Japan
Volume :
43
Issue :
5
fYear :
1996
Firstpage :
791
Lastpage :
810
Abstract :
For the noninvasive diagnosis of heart disease based on the acoustic and elastic characteristics of the heart muscle, it is necessary to transcutaneously measure small vibration signals, including components with an amplitude of less than 100 /spl mu/m, from various parts of the heart wall continuously for periods of more than several heartbeats in a wide frequency range up to 1 kHz. Such measurement, however, has not been realized by any ultrasonic diagnostic methods or systems to date. By introducing the constraint least-square approach, this paper proposes a new method for accurately tracking the movement of the heart wall based on both the phase and magnitude of the demodulated signal to determine the instantaneous position of the object so that the vibration velocity of the moving object can be accurately estimated. By this method, small vibrations of the heart wall with small amplitudes less than 100 /spl mu/m on the motion resulting from a heartbeat with large amplitude of 10 mm can be successfully detected with sufficient reproducibility in the frequency range up to several hundred Hertz continuously for periods of about 10 heartbeats. The resultant small vibration is analyzed not only in the time domain, but also in the frequency domain. As confirmed by the preliminary experiments herein reported, the new method offers potential for research in acoustical diagnosis of heart disease.
Keywords :
biomechanics; biomedical measurement; echocardiography; frequency-domain analysis; least squares approximations; muscle; spectral analysis; time-domain analysis; vibration measurement; acoustic characteristics; acoustical diagnosis; constraint least-square approach; demodulated signal magnitude; demodulated signal phase; elastic characteristics; frequency domain; heart disease; heart muscle; heart wall vibrations; instantaneous position; moving object; noninvasive diagnosis; small vibration signals; spectrum analysis; time domain; transcutaneous measurement; ultrasonic diagnostic methods; vibration velocity; Acoustic measurements; Cardiac disease; Frequency measurement; Heart; Muscles; Noninvasive treatment; Phase estimation; Tracking; Ultrasonic variables measurement; Vibration measurement;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/58.535480
Filename :
535480
Link To Document :
بازگشت