DocumentCode :
1360325
Title :
New Approach to Look-Up-Table Design and Memory-Based Realization of FIR Digital Filter
Author :
Meher, Pramod Kumar
Volume :
57
Issue :
3
fYear :
2010
fDate :
3/1/2010 12:00:00 AM
Firstpage :
592
Lastpage :
603
Abstract :
Distributed arithmetic (DA)-based computation is popular for its potential for efficient memory-based implementation of finite impulse response (FIR) filter where the filter outputs are computed as inner-product of input-sample vectors and filter-coefficient vector. In this paper, however, we show that the look-up-table (LUT)-multiplier-based approach, where the memory elements store all the possible values of products of the filter coefficients could be an area-efficient alternative to DA-based design of FIR filter with the same throughput of implementation. By operand and inner-product decompositions, respectively, we have designed the conventional LUT-multiplier-based and DA-based structures for FIR filter of equivalent throughput, where the LUT-multiplier-based design involves nearly the same memory and the same number of adders, and less number of input register at the cost of slightly higher adder-widths than the other. Moreover, we present two new approaches to LUT-based multiplication, which could be used to reduce the memory size to half of the conventional LUT-based multiplication. Besides, we present a modified transposed form FIR filter, where a single segmented memory-core with only one pair of decoders are used to minimize the combinational area. The proposed LUT-based FIR filter is found to involve nearly half the memory-space and (1/N) times the complexity of decoders and input-registers, at the cost of marginal increase in the width of the adders, and additional \\sim(4N\\times W) AND-OR-INVERT gates and \\sim(2N\\times W) NOR gates. We have synthesized the DA-based design and LUT-multiplier based design of 16-tap FIR filters by Synopsys Design Compiler using TSMC 90 nm library, and find that the proposed LUT-multiplier-based design involves ne- - arly 15% less area than the DA-based design for the same throughput and lower latency of implementation.
Keywords :
Digital signal processing (DSP) chip; FIR filter; LUT-based computing; VLSI; distributed arithmetic; memory-based computing;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2009.2026683
Filename :
5356201
Link To Document :
بازگشت