DocumentCode :
1360744
Title :
Sparse Sensing With Co-Prime Samplers and Arrays
Author :
Vaidyanathan, Palghat P. ; Pal, Piya
Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
Volume :
59
Issue :
2
fYear :
2011
Firstpage :
573
Lastpage :
586
Abstract :
This paper considers the sampling of temporal or spatial wide sense stationary (WSS) signals using a co-prime pair of sparse samplers. Several properties and applications of co-prime samplers are developed. First, for uniform spatial sampling with M and N sensors where M and N are co-prime with appropriate interelement spacings, the difference co-array has O(MN) freedoms which can be exploited in beamforming and in direction of arrival estimation. An M -point DFT filter bank and an N-point DFT filter bank can be used at the outputs of the two sensor arrays and their outputs combined in such a way that there are effectively MN bands (i.e., MN narrow beams with beamwidths proportional to 1/MN), a result following from co-primality. The ideas are applicable to both active and passive sensing, though the details and tradeoffs are different. Time domain sparse co-prime samplers also generate a time domain co-array with O(MN) freedoms, which can be used to estimate the autocorrelation at much finer lags than the sample spacings. This allows estimation of power spectrum of an arbitrary signal with a frequency resolution proportional to 2π/(MNT) even though the pairs of sampled sequences xc(NTn) and xc(MTn) in the time domain can be arbitrarily sparse - in fact from the sparse set of samples xc(NTn) and xc(MTn) one can estimate O(MN) frequencies in the range |ω| <; π/T. It will be shown that the co-array based method for estimating sinusoids in noise offers many advantages over methods based on the use of Chinese remainder theorem and its extensions. Examples are presented throughout to illustrate the various concepts.
Keywords :
array signal processing; direction-of-arrival estimation; discrete Fourier transforms; filtering theory; signal sampling; time-domain analysis; DFT filter bank; active sensing; beamforming; direction of arrival estimation; passive sensing; power spectrum estimation; sensor array; sparse sampler; sparse sensing; spatial sampling; spatial wide sense stationary signal sampling; temporal wide sense stationary signal sampling; time domain co-array; time domain sparse co-prime sampler; Correlation; Discrete Fourier transforms; Estimation; Manganese; Sensor arrays; Time domain analysis; Co-arrays; co-prime arrays; sampling; sparse sensing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2010.2089682
Filename :
5609222
Link To Document :
بازگشت