Title :
Schottky Barrier Carbon Nanotube Transistor: Compact Modeling, Scaling Study, and Circuit Design Applications
Author :
Najari, Montassar ; Frégonèse, Sébastien ; Maneux, Cristell ; Mnif, Hassène ; Masmoudi, Nouri ; Zimmer, Thomas
Author_Institution :
Mater. to Syst. (IMS) Lab., Univ. Bordeaux 1, Talence, France
Abstract :
This paper presents a computationally efficient physics-based compact model for the Schottky barrier (SB) carbon nanotube field-effect transistor (CNTFET). This compact model includes a new analytical formulation of the channel charge, taking into account the influence of the source and drain SBs. Compact model simulation results (- characteristic and channel density of charge) as well as Monte Carlo simulation results, which are provided by a recent work, will be given and compared to each other and also to experimental data to validate the used approximations. Good agreement is observed over a large range of gate and drain biases. Furthermore, a scaling study is presented to examine the impact of technological parameters on the device figure of merit. Then, for the assessment of the SB on circuit performances, traditional logical circuits are designed using the SB-CNTFET compact model, and results are compared with a conventional CNTFET with zero-SB height. Finally, exploiting the particular properties of SB-CNTFETs, a three-valued static memory that is suitable for high density integration is presented.
Keywords :
Monte Carlo methods; Schottky barriers; Schottky gate field effect transistors; carbon nanotubes; logic circuits; nanotube devices; semiconductor device models; ternary logic; C; Monte Carlo simulation; SB-CNTFET compact model; Schottky barrier carbon nanotube field-effect transistor; circuit design application; compact model simulation; compact modeling; high density integration; logical circuit; physics-based compact model; three-valued static memory; Approximation methods; CNTFETs; Computational modeling; Integrated circuit modeling; Logic gates; Mathematical model; Compact modeling; Schottky barrier carbon-based transistor; WKB; spice simulation; static memory cell; tunneling;
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/TED.2010.2084351