• DocumentCode
    1361564
  • Title

    Predicting Protein Function by Frequent Functional Association Pattern Mining in Protein Interaction Networks

  • Author

    Cho, Young-Rae ; Zhang, Aidong

  • Author_Institution
    Dept. of Comput. Sci., Baylor Univ., Waco, TX, USA
  • Volume
    14
  • Issue
    1
  • fYear
    2010
  • Firstpage
    30
  • Lastpage
    36
  • Abstract
    Predicting protein function from protein interaction networks has been challenging because of the complexity of functional relationships among proteins. Most previous function prediction methods depend on the neighborhood of or the connected paths to known proteins. However, their accuracy has been limited due to the functional inconsistency of interacting proteins. In this paper, we propose a novel approach for function prediction by identifying frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our frequent labeled subgraph mining algorithm efficiently searches the functional association patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network, our algorithm found more than 1400 frequent functional association patterns. The function prediction is performed by matching the subgraph, including the unknown protein, with the frequent patterns analogous to it. By leave-one-out cross validation, we show that our approach has better performance than previous link-based methods in terms of prediction accuracy. The frequent functional association patterns generated in this study might become the foundations of advanced analysis for functional behaviors of proteins in a system level.
  • Keywords
    molecular biophysics; pattern classification; proteins; a priori pruning; functional association pattern mining; labeled subgraph; leave-one-out cross validation; protein function prediction; yeast protein interaction network; Function prediction; protein interaction networks; protein–protein interactions; Algorithms; Computational Biology; Data Mining; Pattern Recognition, Automated; Protein Interaction Mapping; Proteins;
  • fLanguage
    English
  • Journal_Title
    Information Technology in Biomedicine, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1089-7771
  • Type

    jour

  • DOI
    10.1109/TITB.2009.2028234
  • Filename
    5229314