DocumentCode
1361564
Title
Predicting Protein Function by Frequent Functional Association Pattern Mining in Protein Interaction Networks
Author
Cho, Young-Rae ; Zhang, Aidong
Author_Institution
Dept. of Comput. Sci., Baylor Univ., Waco, TX, USA
Volume
14
Issue
1
fYear
2010
Firstpage
30
Lastpage
36
Abstract
Predicting protein function from protein interaction networks has been challenging because of the complexity of functional relationships among proteins. Most previous function prediction methods depend on the neighborhood of or the connected paths to known proteins. However, their accuracy has been limited due to the functional inconsistency of interacting proteins. In this paper, we propose a novel approach for function prediction by identifying frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our frequent labeled subgraph mining algorithm efficiently searches the functional association patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network, our algorithm found more than 1400 frequent functional association patterns. The function prediction is performed by matching the subgraph, including the unknown protein, with the frequent patterns analogous to it. By leave-one-out cross validation, we show that our approach has better performance than previous link-based methods in terms of prediction accuracy. The frequent functional association patterns generated in this study might become the foundations of advanced analysis for functional behaviors of proteins in a system level.
Keywords
molecular biophysics; pattern classification; proteins; a priori pruning; functional association pattern mining; labeled subgraph; leave-one-out cross validation; protein function prediction; yeast protein interaction network; Function prediction; protein interaction networks; protein–protein interactions; Algorithms; Computational Biology; Data Mining; Pattern Recognition, Automated; Protein Interaction Mapping; Proteins;
fLanguage
English
Journal_Title
Information Technology in Biomedicine, IEEE Transactions on
Publisher
ieee
ISSN
1089-7771
Type
jour
DOI
10.1109/TITB.2009.2028234
Filename
5229314
Link To Document