Title :
Cryogenic Etching of Silicon: An Alternative Method for Fabrication of Vertical Microcantilever Master Molds
Author :
Addae-Mensah, Kweku A. ; Retterer, Scott ; Opalenik, Susan R. ; Thomas, Darrell ; Lavrik, Nickolay V. ; Wikswo, John P.
Author_Institution :
Dept. of Biomed. Eng., Columbia Univ., New York, NY, USA
Abstract :
This paper examines the use of deep reactive ion etching of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of an SiOxFy polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the O2 flow rate and the capacitively coupled plasma power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using electron-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 ??m , and 2 ??m.
Keywords :
cantilevers; etching; micromechanical devices; oxygen compounds; resists; silicon compounds; SiOxFy; capacitively coupled plasma power; cryogenic etching; deep reactive ion etching; electron-beam resist; size 1 mum; size 2 mum; size 750 nm; vertical microcantilever master molds; Biological microelectromechanical systems (BioMEMS); cryogenic DRIE; deep reactive ion etching (DRIE); microelectromechanical systems (MEMS); polydimethylsiloxane (PDMS); vertical microcantilever arrays;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2009.2037440